3D-A-Nets: 3D Deep Dense Descriptor for Volumetric Shapes with Adversarial Networks

نویسندگان

  • Mengwei Ren
  • Liang Niu
  • Yi Fang
چکیده

Recently researchers have been shifting their focus towards learned 3D shape descriptors from hand-craft ones to better address challenging issues of the deformation and structural variation inherently present in 3D objects. 3D geometric data are often transformed to 3D Voxel grids with regular format in order to be better fed to a deep neural net architecture. However, the computational intractability of direct application of 3D convolutional nets to 3D volumetric data severely limits the efficiency (i.e. slow processing) and effectiveness (i.e. unsatisfied accuracy) in processing 3D geometric data. In this paper, powered with a novel design of adversarial networks (3D-A-Nets), we have developed a novel 3D deep dense shape descriptor (3D-DDSD) to address the challenging issues of efficient and effective 3D volumetric data processing. We developed new definition of 2D multilayer dense representation (MDR) of 3D volumetric data to extract concise but geometrically informative shape description and a novel design of adversarial networks that jointly train a set of convolution neural network (CNN), recurrent neural network (RNN) and an adversarial discriminator. More specifically, the generator network produces 3D shape features that encourages the clustering of samples from the same category with correct class label, whereas the discriminator network discourages the clustering by assigning them misleading adversarial class labels. By addressing the challenges posed by the computational inefficiency of direct application of CNN to 3D volumetric data, 3D-A-Nets can learn high-quality 3DDSDD which demonstrates superior performance on 3D shape classification and retrieval over other state-of-the-art ∗Address: 5 Metrotech Center LC024, Brooklyn, NY, 11201; Email: [email protected]; Tel: +1-646-854-8866 techniques by a great margin.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Learning a Probabilistic Latent Space of Object Shapes via 3D Generative-Adversarial Modeling

We study the problem of 3D object generation. We propose a novel framework, namely 3D Generative Adversarial Network (3D-GAN), which generates 3D objects from a probabilistic space by leveraging recent advances in volumetric convolutional networks and generative adversarial nets. The benefits of our model are three-fold: first, the use of an adversarial criterion, instead of traditional heurist...

متن کامل

Unsupervised 3D Reconstruction from a Single Image via Adversarial Learning

Recent advancements in deep learning opened new opportunities for learning a high-quality 3D model from a single 2D image given sufficient training on large-scale data sets. However, the significant imbalance between available amount of images and 3D models, and the limited availability of labeled 2D image data (i.e. manually annotated pairs between images and their corresponding 3D models), se...

متن کامل

Learning Efficient Point Cloud Generation for Dense 3D Object Reconstruction

Conventional methods of 3D object generative modeling learn volumetric predictions using deep networks with 3D convolutional operations, which are direct analogies to classical 2D ones. However, these methods are computationally wasteful in attempt to predict 3D shapes, where information is rich only on the surfaces. In this paper, we propose a novel 3D generative modeling framework to efficien...

متن کامل

Wide and deep volumetric residual networks for volumetric image classification

3D shape models that directly classify objects from 3D information have become more widely implementable. Current state of the art models rely on deep convolutional and inception models that are resource intensive. Residual neural networks have been demonstrated to be easier to optimize and do not suffer from vanishing/exploding gradients observed in deep networks. Here we implement a residual ...

متن کامل

3D Shape Induction from 2D Views of Multiple Objects

In this paper we investigate the problem of inducing a distribution over three-dimensional structures given twodimensional views of multiple objects taken from unknown viewpoints. Our approach called “projective generative adversarial networks” (PrGANs) trains a deep generative model of 3D shapes whose projections match the distributions of the input 2D views. The addition of a projection modul...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:
  • CoRR

دوره abs/1711.10108  شماره 

صفحات  -

تاریخ انتشار 2017